Güneş enerjisi, güneşin çekirdeğinde yer alan füzyon süreci ile (hidrojen gazının helyuma dönüşmesi) açığa çıkan ışıma enerjisidir. Dünya atmosferinin dışında güneş enerjisinin şiddeti, yaklaşık olarak 1370 W/m² değerindedir, ancak yeryüzüne ulaşan miktarı atmosferden dolayı 0-1100 W/m2 değerleri arasında değişim gösterir. Bu enerjinin dünyaya gelen küçük bir bölümü dahi, insanlığın mevcut enerji tüketiminden kat kat fazladır. Güneş enerjisinden yararlanma konusundaki çalışmalar özellikle 1970’lerden sonra hız kazanmış, güneş enerjisi sistemleri teknolojik olarak ilerleme ve maliyet bakımından düşme göstermiş, çevresel olarak temiz bir enerji kaynağı olarak kendini kabul ettirmiştir.
Dünya ile Güneş arasındaki mesafe 150 milyon km’dir. Dünya’ya güneşten gelen enerji, Dünya’da bir yılda kullanılan enerjinin 20 bin katıdır.
Güneş ışınımının tamamı yer yüzeyine ulaşamaz, %30 kadarı atmosfer tarafından geriye yansıtılır.
Güneş ışınımının %50’si atmosferi geçerek dünya yüzeyine ulaşır. Bu enerji ile Dünya’nın sıcaklığı yükselir ve yeryüzünde yaşam mümkün olur. Rüzgâr hareketlerine ve okyanus dalgalanmalarına da bu ısınma neden olur.
Güneşten gelen ışınımının %20’si atmosfer ve bulutlarda tutulur.
Yeryüzeyine gelen güneş ışınımının %1’den azı bitkiler tarafından fotosentez olayında kullanılır. Bitkiler, fotosentez sırasında güneş ışığıyla birlikte karbondioksit ve su kullanarak, oksijen ve şeker üretirler. Fotosentez, yeryüzünde bitkisel yaşamın kaynağıdır.Güneş, nükleer enerji dışındaki bütün enerjilerin dolaylı veya direkt kaynağıdır.
Güneş enerjisi teknolojileri yöntem, malzeme ve teknolojik düzey açısından çok çeşitlilik göstermekle birlikte iki ana gruba ayrılabilir:
Fotovoltaik Güneş Teknolojisi: Fotovoltaik hücreler denen yarı-iletken malzemeler güneş ışığını doğrudan elektriğe çevirirler.
Isıl Güneş Teknolojileri: Bu sistemlerde öncelikle güneş enerjisinden ısı elde edilir. Bu ısı doğrudan kullanılabileceği gibi elektrik üretiminde de kullanılabilir.
Fotovoltaik Hücreler
Güneş hücreleri (fotovoltaik hücreler), yüzeylerine gelen güneş ışığını doğrudan elektrik enerjisine dönüştüren yarıiletken maddelerdir. Yüzeyleri kare, dikdörtgen, daire şeklinde biçimlendirilen güneş hücreleri alanları genellikle 100 cm² civarında, kalınlıkları ise 0,1- 0,4 mm arasındadır.
Güneş hücreleri fotovoltaik ilkeye dayalı olarak çalışırlar, yani üzerlerine ışık düştüğü zaman uçlarında elektrik gerilimi oluşur. Hücrenin verdiği elektrik enerjisinin kaynağı, yüzeyine gelen güneş enerjisidir.
Güneş enerjisi, güneş hücresinin yapısına bağlı olarak % 5 ile % 30 arasında bir verimle elektrik enerjisine çevrilebilir. Güç çıkışını artırmak amacıyla çok sayıda güneş hücresi birbirine paralel ya da seri bağlanarak bir yüzey üzerine monte edilir, bu yapıya güneş hücresi modülü ya da fotovoltaik modül adı verilir. Güç talebine bağlı olarak modüller birbirlerine seri ya da paralel bağlanarak bir kaç Watt’tan MEGA Watt’lara kadar sistem oluşturulur.
Fotovoltaik Hücrelerinin Yapımında Kullanılan Malzemeler
Fotovoltaik hücreler pek çok farklı maddeden yararlanarak üretilebilir. Günümüzde en çok kullanılan maddeler şunlardır:
Kristal Silisyum: Önce büyütülüp daha sonra 150-200 mikron kalınlıkta ince tabakalar halinde dilimlenen Tek kristal Silisyum bloklardan üretilen güneş pillerinde laboratuar şartlarında %24, ticari modüllerde ise %15’in üzerinde verim elde edilmektedir. Dökme silisyum bloklardan dilimlenerek elde edilen Çok kristal Silisyum güneş pilleri ise daha ucuza üretilmekte, ancak verim de %2-5 kadar düşük olmaktadır. Verim, laboratuar şartlarında %18, ticari modüllerde ise %14 civarındadır.
Galyum Arsenit(GaAs): Bu malzemeyle laboratuar şartlarında %25 ve %28 (optik yoğunlaştırıcılı) verim elde edilmektedir. Diğer yarıiletkenlerle birlikte oluşturulan çok eklemli GaAs pillerde %30 verim elde edilmiştir. GaAs güneş pilleri uzay uygulamalarında ve optik yoğunlaştırıcılı sistemlerde kullanılmaktadır.
Amorf Silisyum: Kristal yapı özelliği göstermeyen bu Si pillerden elde edilen verim %10 dolayında, ticari modüllerde ise %5-7 mertebesindedir. Günümüzde daha çok küçük elektronik cihazların güç kaynağı olarak kullanılan amorf silisyum direkt güneş ışınımı az olan bölgelerde de santral uygulamalarında kullanılmaktadır. Amorf silisyumun bir başka önemli uygulama sahası ise binalara entegre yarısaydam cam yüzeyler, bina dış koruyucusu ve enerji üreteci uygulamalarıdır.
Kadmiyum Tellürid(CdTe): Çok kristal yapıda bir malzeme olan CdTe ile güneş hücre maliyetinin çok aşağılara çekileceği tahmin edilmektedir. Laboratuar tipi küçük hücrelerde %16, ticari tip modüllerde ise %7 civarında verim elde edilmektedir.
Bakır İndiyum Diselenid(CuInSe2): Bu çokkristal hücre laboratuar şartlarında %17,7 ve enerji üretimi amaçlı geliştirilmiş olan prototip bir modülde ise %10,2 verim elde edilmiştir.
Optik Yoğunlaştırıcılı Hücreler: Gelen ışığı 10-500 kat oranlarda yoğunlaştıran mercekli veya yansıtıcılı araçlarla modül verimi %20’nin, hücre verimi ise %30’un üzerine çıkılabilmektedir. Yoğunlaştırıcılar basit ve ucuz plastik malzemeden veya camdan yapılmaktadır.
Laboratuarlarda ulaşılan en yüksek hücre verimleri 1 cm 2 ‘lik hücre alanı için:
Kristalsi güneş hücresi için: %24.5
Polikristalsi : %19.8
Amorfsi : %12.7
Çok Katlı Güneş Hücreleri : %40
Son Yıllarda Üzerinde Çalışılan Güneş Pilleri
Ticari ortama girmiş olan geleneksel Si güneş hücrelerinin yerini alabilecek verimleri aynı ama üretim teknolojileri daha kolay ve daha ucuz olan güneş hücreleri üzerinde de son yıllarda çalışmalar yoğunlaştırılmıştır.
Bunlar; fotoelektrokimyasal çok kristalli Titanyum Dioksit hücreler, polimer yapılı Plastik hücreler ve güneş spektrumunun çeşitli dalga boylarına uyum sağlayacak şekilde üretilebilen enerji bant aralığına sahip Kuantum güneş hücreleri gibi yeni teknolojilerdir.
Son Yorumlar